Quantcast
Channel: 生命奧祕 – PanSci 泛科學
Viewing all articles
Browse latest Browse all 990

讓地球大氣層充滿氧氣的星球改造神器:藍綠菌──《藻的秘密》

$
0
0
  • 作者/茹絲.卡辛吉;譯者/鄧子衿

想回到 37 億年前,你可能需要先準備好「氧氣裝備」!

想像你自己來到三十七億年前的地球,在地球從宇宙塵埃聚集成行星之後,已經過了約七億五千萬年。

你站在一座岩石火山島上,往四面八方望去,只見富含鐵質的綠色海水延伸到地平線那端。你所在的這座島嶼上沒有植物,也沒有可供植物生長的土壤。因為土壤中含有植物被分解之後產生的有機成分,然而在三十億年前,地球上還沒有植物。

戴上裝備,出發!圖/pixabay

你可能要像是水肺潛水者那樣攜帶氧氣裝備,因為那個時候的地球上沒有氧氣。事實上,你周圍的大氣是由一氧化碳、二氧化碳和甲烷混合而成,其中可能還有氫氣、氮氣和二氧化硫,或許會致人於死,不過至少溫度是宜人的。

雖然當時太陽的亮度只有現在的七成,但是有二氧化碳和甲烷為地球表面保溫。當時地球自轉的速度是現在的兩倍,所以日出之後六小時就日落,這可能會讓你驚慌失措。

那時候月球和地球的距離是現在的十分之一,讓月球看起來有十倍大,在天空中非常明亮。由於距離地球很近,月球造成的重力效應也很強,海面漲落潮差超過數百呎。你或許可以看到月球上的隕石坑,不過可能得看日子。

當時地球上的火山活動比現在活躍,經常會噴出火山灰和硫酸到大氣中。在清晨與落日時分,天空會呈現黃色和橘紅色。

37 億年前的地球沒有臭氧層,那還有生命存在嗎?

當時地球上的海水量是現在的兩倍,但是水分子一個個消失了,因為大氣中沒有氧氣,也就沒有臭氧層。

曾經有水的金星,現在乾燥無比。圖/wikimedia

在沒有臭氧層的狀況下,來自太陽的大批紫外線能毫不受阻攔地轟炸水,讓水分子分解成氫和氧。比較輕的氫原子很快地逸散到太空中,氧原子則馬上和水中的礦物質結合。在沒有臭氧層的狀況下,地球會朝著毫無生機的狀況進展。金星的命運便是如此,曾經有水的金星,現在乾燥無比。

不過這時候的地球有海洋,海洋中棲息著單細胞細菌,以及類似細菌的單細胞生物—古菌(archaea)。這些微生物和其他所有生物一樣,都需要能量才能運作,以及製造更多細胞的組成成分,以便分裂複製。

它們的細胞壁堅硬,因此不可能經由掠食其他同類來得到能量。不過它們可以把細胞壁外的硫化氫吸收到細胞內,經由化學反應讓硫化氫的電子釋放出來,再利用這些電子合成暫時儲存能量的分子 ATP(三磷酸腺苷)。細胞利用 ATP 和溶解在水中的二氧化碳合成有機化合物,包括生長和生殖所需要的胺基酸、蛋白質、脂質和醣類。

現在地球上依然有許多這類化學自營生物(chemoautotroph),它們生活在海底熱泉,或是黃石國家公園充滿硫的熱泉等這些極端的環境中。但是差不多在你拜訪古代地球的時候(或是前後一兩億年),一種新的細菌在太陽下演化出來了。

黃石國家公園中的大稜鏡溫泉,有些藻類會生長在這樣極端的環境中。圖/wikimedia

這種細菌漂浮在海面下附近,因為含有葉綠素和其他色素而呈現藍綠色。這些色素能吸收含有太陽能量的光子。藍綠菌用這些能量把水分解成氫和氧,產生電子,製造 ATP。然後它們就和化學自營生物一樣,利用 ATP 合成有機化合物,這個過程稱為光合作用。藍綠菌把氧氣當成廢棄物排出, 因此這過程稱為產氧型光合作用(oxygenic photosynthesis)。這是非常複雜的過程,就連今日的科學家依然還沒有解開這個機制的細節。

藍綠菌具備的功能讓它們繁榮昌盛。古菌和其他細菌只是到處飄盪,企盼能遇到它們各自喜愛的化學食物,但是這種新出現的生物並不是分解水中偶然才能遇到的成分,而是分解無所不在的水分子。藍綠菌只要在有陽光的狀況下就能進食,因此繁殖的速度非常快,而且持續產出氧氣。(在二十億年中)這些氧氣飄到大氣中,形成具有保護作用的臭氧層,讓我們的藍色行星免於籠罩於沉沉死氣之中。1

藍綠菌和閃電竟然也有共通之處?!

如果這還不夠厲害,有些藍綠菌種類還有比舞動它們的藍綠色身段更厲害的技術。

地球上的生物需要氮,DNA、ATP、蛋白質和其他生物所必須的化合物中都含有氮原子。地球大氣中一直有很多氮氣,但是氮氣(N2)中的氮原子彼此結合得很緊密,生物無法直接運用。而閃電的電壓高達一億伏特,這等或是更高的能量能夠打破氮氣分子,讓個別的氮原子和氫或氧結合,形成氨、銨鹽(ammonium)或硝酸鹽等把氮固定起來的分子。

閃電可以固氮,但是如果生命只能依靠閃電,就永遠無法登上陸地了。圖/pixabay

但是棘手的地方在於閃電雖然壯觀,卻無法大量產生這類分子。如果生命只能依靠閃電,就永遠無法登上陸地。正當此時,藍綠菌登場了。它們能做到和閃電一模一樣的事,只不過是在微生物的尺度下。

藍綠菌成為地球上主要的固氮生物(diazotroph)。幸好藍綠菌樂於分享,它所固定下來的氮有一半會排入水中,可以被細菌和古菌吸收。如果沒有具備固氮能力的藍綠菌,海洋中的生物形式將會非常簡單,而且數量也不多,只因固定下來的氮不足。

有創意的藍綠菌,讓自己在固氮時,不被氧氣擊倒

不論在過去或現代,藍綠菌固氮都相當不容易。首先它們要能夠製造固氮酶(nitrogenase),這種酵素含有鐵和鉬,能催化固氮反應。除此之外,它們還要防範一個由自己製造的問題:氧氣。

這個問題是這樣的:氧原子的最外層有六個電子,因此它還要再抓住兩個電子,才能讓最外層有八個電子,形成穩定的狀態。早期的海水溶滿了鐵,而鐵原子在最外層有兩個電子,所以你可以想見會發生什麼事──藍綠菌拋棄的氧很快就會抓住鐵,如此一來,藍綠菌就沒有能用來製造固氮酶的鐵原子了。

藍綠菌得要有創意才行。有些藍綠菌在固氮的時候停止光合作用(這樣就不會釋放氧氣了),有些藍綠菌只在晚上不進行光合作用時行固氮作用(但如果沒有陽光照射就會發生混亂)。有些則和同種的其他個體合作,細胞彼此連接成細微的絲狀結構,就像是一串珠鍊。約有十分之一的珠子會停止光合作用,並且讓細胞壁變得更厚,以阻擋氧氣進入。這些特殊的細胞稱為異型細胞(heterocyst),專門固氮,會把含氮分子分享給左右細胞,換來糖類以維持生存。現在能固氮的藍綠菌依然採用這些方法。

藍綠菌要讓自己繁榮昌盛,真的不容易!

藍綠菌要散播到全世界,不只必須解決固氮的問題。它們還面臨兩難的困境:它們需要靠近海洋表面,但是又要避免紫外線破壞 DNA。

為此它們演化出一層細胞外的多醣類(由糖分子連接而的長鏈),稱為黏質(mucilage),它可能是世界上最早的防曬成分,也是它讓藍綠菌具有那典型的黏滑表面。最後,所有的藍綠菌都因為有黏質而變得黏黏滑滑。

總加起來,藍綠菌確實具有各種讓它自己繁榮昌盛的能力。大部分的藍綠菌每七到十二小時可以複製一次,換算下來,一平方呎的藍綠菌可以在兩天之內覆滿一間小辦公室的地板。有些種類的藍綠菌每兩個小時便複製一次,於是同樣的大小在兩天之內就可以蓋滿六座足球場。

不論是哪一種,最早的藍綠菌在數億年中複製的幅度,遠遠超過我們的想像。這段其間,它們也演化出許多不同大小和形狀的種類:球狀、卵狀、桿狀、螺旋狀或絲狀(數量最多的是圓形原綠球藻〔Prochlorococcus〕,它們在 1986 年才被發現,也是最小的藍綠菌,一茶匙的海水有四十萬個原綠球藻)。

藍綠菌如果漂浮在水面上,並且經由黏質黏在一起,就會形成綠色的團塊。這些團塊會吸收當時在水中漂蕩的各種成分,包括碳酸鈣和碳酸鎂之類的礦物質,以及其他死亡的微生物而變得愈來愈稠密。自始至終,這些活生生的藍綠菌能夠藉由黏質滑動,往有陽光的海面移動,並持續增殖。

註解:

  1. 最早進行光合作用的生物並不會造氧氣,它們以紫色的色素吸收近紅外線,從含硫化合物中取得電子,把細小的純硫顆粒當成廢棄物排出。它們沒有如同近親藍綠菌那般昌盛,但是依然能夠在現在無氧的水中續存。

——本文摘自《藻的祕密:誰讓氧氣出現?誰在海邊下毒?誰緩解了飢荒?從生物學、飲食文化、新興工業到環保議題,揭開藻類對人類的影響、傷害與拯救》,2019 年 12 月,臉譜出版

 

The post 讓地球大氣層充滿氧氣的星球改造神器:藍綠菌──《藻的秘密》 appeared first on PanSci 泛科學.


Viewing all articles
Browse latest Browse all 990

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>