Quantcast
Channel: 生命奧祕 – PanSci 泛科學
Viewing all articles
Browse latest Browse all 990

人工智慧能力步步進逼人類?談「人工智慧」與「人類智慧」──《LIFE 3.0》

$
0
0
  • 在人工智慧崛起的現在,你希望看見甚麼樣的未來?當人工智慧超越人類時,人類該何去何從?人工智慧對犯罪、戰爭、司法、工作、社會將造成甚麼影響?又會帶給生而為人的我們甚麼感受?《LIFE 3.0》將毫不隱諱呈現這個最具爭議性話題的全方位觀點,舉凡超人工智慧所代表的意義,意識究竟是怎麼一回事,甚至是宇宙生命發展最終的物理法則定律極限,包羅萬象的豐富內容,盡皆收錄在《LIFE 3.0》中。

什麼是智慧?「智慧」是「達成複雜目標的能力」

我太太和我前不久有幸出席一場關於人工智慧的研討會,其中一場專題演講中,頂尖的人工智慧專家被問到要怎樣定義智慧時,花了很長的時間交換意見,結果沒有取得共識。

這讓我們倆覺得滿有趣的:就連研究智慧的聰明專家也都沒辦法定義什麼叫做智慧!這就表示智慧的定義並沒有「標準答案」,而是有各種不同的說法,其中包括邏輯的強度、理解能力、規劃能力、情緒控管、自我意識、創造力、解決問題的能力、學習力等等,不一而足。

就連研究智慧的聰明專家也都沒辦法定義什麼叫做智慧,這就表示智慧的定義並沒有「標準答案」!圖/DariuszSankowski @pixabay

在進入探討智慧之前,我希望先提出一個最廣義、最籠統的定義,而且不要被現有的智慧形式定型了。

智慧 = 達成複雜目標的能力

這樣就可以滿足種種不同的定義,因為不論是理解能力、自我意識、解決問題的能力和學習力,都可以算是複雜目標。這個定義也與《牛津字典》的講法:取得與運用知識和技能的能力,並行不悖,只要把運用知識和技能設定成複雜的目標就行了。

由於複雜目標多到族繁不及備載,所以就會有各種可能的智慧。依照我們的定義,用智商這樣單一的數字量化人類、動物或是機器的智慧高低,就會變成沒有意義。只會下西洋棋的電腦跟只會下圍棋的電腦,哪一台比較聰明?這個問題的答案不會有意義,因為這兩者擅長的項目不同,無法直接比較,不過如果有第三台電腦,能以同樣的水準達成所有目標,而且會有一項表現得比其中一部電腦更好(像是能下贏西洋棋),那麼說第三台電腦比較聰明,就沒有多大爭議了。

Alphago 是只會下圍棋的電腦,跟 IBM 只會下西洋棋的深藍相比,哪一台比較聰明?這個問題的答案不會有意義,因為這兩者擅長的項目不同,無法直接比較。圖/Buster Benson @flickr

電腦特定能力超專精 vs 人類的廣泛智慧──邁向「通用人工智慧」

IBM 深藍電腦專門用來下西洋棋,在 1997 年還擊敗過世界棋王卡斯帕洛夫(Garry Kasparov),不過它只能達成下西洋棋這麼有限的目標——別看深藍電腦的軟硬體設施有多麼厲害,事實上它就連跟四歲的小朋友玩井字棋都會輸。

人類的智慧與之相比就廣泛得太多了,熟練幾十種令人嘆為觀止的技巧都不是問題。只要給頭好壯壯的小孩子夠多的訓練,別說任何遊戲都能來上一手,還有能力開口說任何語言、從事任何運動跟職業。

以現階段人類和機器的智慧相互比較,如下圖所示:

圖中每個箭頭分別表示,現階段最優秀的人工智慧系統可以達成的目標,也呈現出現階段人工智慧有限的屬性:每個系統都只能達成非常特定的目標。相較之下,人類的智慧可就廣泛許多:一個頭好壯壯的小孩子透過學習,就幾乎可以在每一個目標中,表現得更好。

我們輕而易舉就能大獲全勝,機器只能在少數有限的範圍內贏過人類,只是項目正持續增加。研究人工智慧的終極目標是打造「通用人工智慧」,盡可能擴大廣泛的範圍:幾乎可以達成任何目標的能力,包括學習在內

假定你將來擁有做為個人助理的全新機器人,這個機器人沒有自己的目標,完全依照你的吩咐行事,而你要求它準備一頓豐富的義大利佳餚。收到指令的機器人開始上網搜尋義大利食譜、找出最近的超市去採買、學習怎樣做義大利麵,如此這般。最後它順利買回食材弄出大餐,酒足飯飽的你想必會認為它聰明得可以。

收到指令的機器人開始上網搜尋義大利食譜、找出最近的超市去採買、學習怎樣做義大利麵,最後順利買回食材弄出大餐。其實機器人只是井然有序替自己設定了好幾個子目標,再一一完成。圖/Pexels @pixabay

實際上,這頓飯原本就是你設定的目標,機器人則是在你提出要求後,接收了你的目標,然後井然有序替自己設定了好幾個子目標,包括超市結帳和磨碎帕馬森起司都算在內。在這個案例中,能否使命必達是判定智慧行為與否的必要條件。

對我們人類而言,工作的困難度理所當然會跟我們要付出多大代價去完成有關。但是將這種標準套用到電腦上就不適當了。要我們算出 314,159 乘以 271,828 可比認出照片中的朋友難多了,但是電腦早在我出生以前,就展現出遠遠超出人類的算術能力,但直到最近才開始有辦法像人類一樣辨識圖像。莫拉維克悖論(Moravec paradox)指的就是這種看似簡單的感受能力背後其實卻需要耗費龐大運算資源的現象,也說明了為什麼人類的大腦能輕鬆完成辨識工作,因為我們投注了龐大的客製化硬體設施在這個領域—確切的規模超過我們腦容量的四分之一。

莫拉維克的「人類能力地貌圖」,電腦潛力已抵達山腳

莫拉維克「人類能力地貌圖」的概念呈現。海拔高度象徵電腦從事該領域的難度,海平面淹沒的部分則是電腦現在可以完成的任務。

電腦是萬用的機器,擁有完成任一種工作項目的潛力,人類的潛力相較之下,會在需要長期維持重要性的領域表現得比較強,小事當然沒打算放在心上。想像一張「人類能力地貌圖」,我們可以在低窪地區標上「算術」和「死記硬背」,在山腳處標上「定理證明」和「西洋棋」,在高山頂標上「劇烈運動」、「手眼協調」和「社交互動」,那麼電腦的進展就會像是慢慢淹過地表的洪水。

自從他留下這段文字後不過幾十年,如他所預期,海平面加速上升,彷彿遇到強力的全球暖化,當年他筆下的山腳處,有些(好比說是西洋棋)早就已沉到海水裡一段時間了。隨著海平面持續上升,或許有一天會淹過某個引爆點,引發翻天覆地的變化。對機器而言,這個關鍵海平面,就是學會自行設計人工智慧之時。在海水漫過這個標高位置之前,海平面的上升都是人類改善機器的緣故,超過這個高度以後,海平面的上升就會是機器改善機器的結果,而且極有可能以破紀錄的方式,超越過去人類改善機器的速度,在短時間內吞沒所有地表。這個神奇又眾說紛紜的概念叫做「人工智慧爆炸奇點」。

隨著海平面持續上升,或許有一天會淹過某個引爆點,這個關鍵海平面就是機器學會自行設計人工智慧之時,也就是「人工智慧爆炸奇點」。圖/geralt @pixabay

半世紀以前,電腦從低窪處開始,淹過了徒手計算和記帳的工作,不過那時我們大多數人都還是站在陸地上,現在洪水已經抵達山腳,我們得認真看待此地失守的問題。站在山頂上看似安全,不過,如果洪水氾濫的速度維持不變,這些陣地大概再過半世紀以後,也會無一例外的淪陷。我想,在那天到來之前,我們要先準備好諾亞方舟,早點習慣在海上的生活才行!

 

 

本文摘自《LIFE 3.0:人工智慧時代,人類的蛻變與重生》,天下文化出版。

延伸閱讀:

 

The post 人工智慧能力步步進逼人類?談「人工智慧」與「人類智慧」──《LIFE 3.0》 appeared first on PanSci 泛科學.


Viewing all articles
Browse latest Browse all 990

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>