作者/蔡孟利(宜蘭大學生物機電工程學系,本刊總編輯)
「細胞很小」是我們對於這個構成生命體的基本單位之第一印象。細胞有多小?如果先屏除掉一些特例,像是直徑可達公分等級的蛋黃,或是長度可達十公分以上的神經細胞或肌肉細胞,普通細胞的大小只相當於直徑在1~100 μm之間的球體而已。
為什麼會這麼小?
這或許可以從「小」所造成的高效率來思考。例如,細菌是單細胞生物,因為只有一個細胞,所以能應付環境劇烈變化的招數不多。這裡所謂的「劇烈變化」不一定是那種忽然的狂風暴雨或海嘯,或許只是午後陣雨的首顆雨滴掉落在豔陽曝曬了一個上午之後的柏油路面上,讓一隻被雨打到的細菌周圍之環境溫度從攝氏70度瞬間驟降到40度,短時間內就讓這隻細菌經歷了30度的溫差變化。因為這種忽然降臨的危機隨時都有可能快速出現,所以細菌要時時維持住龐大的個體數目,這是延續種族生存的重要手段。所以,生得快,當然是必須的要求。而一隻細菌,例如大腸桿菌,要完成生殖的整個過程需要多少時間?在環境條件還不錯的情況下,大約20分鐘左右就能完成一次分裂生殖。乍看之下,20分鐘並不算是多快的時間,但如果我們仔細考慮一下細節,大腸桿菌的基因組約有460萬個鹼基對,也就是說,在20分鐘的時間內,大腸桿菌必須要將460萬個鹼基對全部複製過一遍,算起來,每個新鹼基對的合成只需要約0.00026秒的時間。這樣的速度,感覺起來應該夠快了吧!
但是在這個過程裡面,細胞內所發生的化學及物理事件必須比0.00026秒快上很多才能產出這麼快速的結果。這裡所說的化學事件,包括了能量供給與消耗的反應、多種酶的活化與去活化等等;物理事件主要是分子的移動,像是因濃度差異所驅動的擴散作用。
為什麼能這麼快?
化學反應的碰撞理論告訴我們說,一個化學反應能否進行的首要條件是反應物的各粒子間必須要能相互碰撞到,但是如此還不能夠保證反應一定會發生,它必須要是「有效」的碰撞才行。有效的碰撞可以從兩個方面來考慮,一個是碰撞當下的那些反應物粒子有足夠動能,使得碰撞時的能量足以超過反應發生所需要的活化能;另一個關鍵則是,這些粒子碰撞到的方位必須夠正確,才足以完成反應。特別是生物體中的那些巨分子在進行反應時,通常只有其整體結構中的某些組成原子才是產生新鍵結的地方,如果在細胞中參與反應的分子間所碰撞到的不是這些地方,而只是碰撞到巨分子的其他角落時,那麼即便碰撞時候的動能夠大,也不會促使反應發生。
由於分子的平均動能和絕對溫度成正比。先不考慮嚴寒的日子,如果只是在攝氏30~35度之間變動的溫度,細胞內一般的分子就可擁有夠用的動能,而碰撞時有機會超越活化能的分子組合數目也就不虞匱乏。因此,在正常溫度下,只要有個方法能夠提高反應物分子間隨機碰撞到的頻率,那麼碰撞到正確方位的可能性也就會越高,結果就可以讓反應的速率愈快。
如何增加反應頻率?
在一根試管內,如果要增加反應物分子之間碰撞到的頻率,最直接的方式應該是增加這根試管內的各種反應物分子之數量,使得在此試管內的反應物分子顆粒數增多,這樣,反應物分子彼此能夠碰撞到的機會也就會增加,如此一來,有效碰撞的頻率增高而反應速這種縮小體積的概念,還可以用來解釋真核細胞內的有膜胞器之存在理由。真核細胞的體積一般遠比原核細胞還要大,常常可達原核細胞的一千倍以上。雖然真核細胞的體積比原核細胞大很多,但是在「快」這件事情上卻沒有比較遜色。主要原因就在於真核細胞內的有膜胞器形塑了各種很小的空間,這些小空間不只區隔了化學反應的種類,也縮小了反應物分子所處環境的體積,讓反應物仍然維持了夠高的濃度,所以還是促成了這些小空間內的化學反應能夠快速的進行,維持了整體細胞對於速度的需求。
細胞小的額外優勢?
小,還有另外一個效率上的優勢。細胞內一般物質運輸的方式是擴散,那是由粒子的熱運動所產生的遷移現象。在擴散過程中,粒子間彼此隨機碰撞並不斷的移動,每個瞬時的遷移方向不是單一性的,但是因為濃度高的區域向濃度低的區城所遷移的粒子數多於反率也就會愈快。但是,如果反應物分子的數量就只有這麼多,已經無法再增加了的話呢?那就換支體積較小的試管吧!如此一來,單位體積內的反應物分子顆粒數還是增多了,同樣的增加有效碰撞的效果還是會發生。單位體積內的反應物分子顆粒數就是濃度,就是我們一般觀念中,增加反應物的濃度可以增加反應速率之基本概念。
對一個細胞來說,靠著增加細胞內反應物分子的數量(增加濃度)來增快反應速率並不是理想的方法,因為這意味著需要消耗更多的能量以獲取更多的反應物;而更多反應物的加入也會導致更多數量的產物之產出。一旦產出的產物超過細胞所需要的數量,細胞就得再消耗額外的能量來移除這些過量的產物。從這個角度思考,同樣是增加反應物的濃度,利用縮小細胞體積的方式來達到增大濃度的目標,應該會比增加反應物分子的數量來得適當。
向所遷移的,最後會使得粒子在整體區域中呈現均勻分佈。粒子擴散所需要的時間會與擴散距離的平方成正比,如果細胞以球體來考慮,當半徑變大為原來的5倍時,那麼從細胞中心擴散到細胞膜所需要的時間將增加為25倍,這就大大的增加了細胞內化學反應的前置作業(材料的運輸供應)與善後處理(廢物的移除)之時間成本。
另外,對細胞而言,不管是從細胞外的環境取得反應所需要的材料,或是將細胞內的廢棄物排除到細胞外,都需要透過細胞最外圍的細胞膜才能完成。所以,細胞必須要保持足夠的表面積,才足以勝任物質交換的需求。而球形體積的增加幅度是半徑增加的立方倍,但表面積的增加幅度只是半徑的平方倍。若如上述細胞的半徑變大為原來的5倍時,體積將增加為原來的125倍,但表面積只變為原來的25倍,導致單位體積所能分配到的表面積只有原來的1/5,這將大幅減少細胞交換物質的能力,這也是細胞體積受限的另一個重要因素。
細胞雖然很小,但如果我們把細胞的尺寸拿來和它內部所容納的粒子尺寸來比較,其實,細胞還是蠻大的。例如,細胞內鈣離子的濃度在平時約為10^-7 M,被活化時上升到約為10^-5 M。而大腸桿菌的體積大概是10^-15公升,拿這個數字乘以剛剛所提到的容積莫耳濃度之數值,就可以得到大腸桿菌內的鈣離子在平常的時候大約有60顆,而在有特定反應發生的時候大概會增加到6000顆。6000顆雖然看起來不少,如果繼續算下去的話:鈣離子的直徑約為0.2 nm,大腸桿菌的長2000 nm,圓形底部直徑800 nm,所以大腸桿菌的長可以疊一萬個鈣離子,底部的直徑可以舖四千個鈣離子。也就是說,如果鈣離子是一個身高170公分、不會太胖,正面看起來大概60公分寬的人站著,那麼大腸桿菌的個體範圍就是底面積約4.52平方公里的土地垂直延伸到高17公里的天空。4.52平方公里比500個足球場還大;通常一個足球場看台的高度不超過20公尺,環場滿座時可以容納超過四萬名觀眾,而我們高17000公尺的500個足球場寬廣之大腸桿菌內,只有60~6000個鈣離子稀疏的分散其中。
此外,也不要小看這個小空間的收納能力。人類擁有46條染色體,若將46條染色體頭尾相連拉排成直線,那麼總長度將會接近1800000 µm。而這麼長的東西,將收納在直徑只在10 µm的細胞核中。並且鹼基對都帶負電,負電跟負電之間是會相斥的,因此還得要有許多帶正電的蛋白質居中協調。其實,還不只這些,那些掌管複製與轉錄的酵素都還沒有算進去呢!
不過要注意的是,小,雖然有上述的諸多好處,但也不是沒有下限的小,畢竟細胞內的空間還是要能容納得下足量的物質,以及反應進行時所需要的作業空間。所以像是病毒那樣小的尺寸,便不足以在其個體內獨力完成完整的生命現象。
〈本文選自《科學月刊》2015年9月號〉
延伸閱讀:
2013諾貝爾生醫獎—細胞的貨運系統
噬菌體基因也能表現細胞骨架蛋白
什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以當個科青
The post 為什麼細胞這麼小?--《科學月刊》 appeared first on PanSci 泛科學.